八大建筑新型材料有哪些
八大建筑新型材料有哪些

新型材料有石墨烯气凝胶、绿色木炭、纳米材料、可编程水泥、自修复混凝土、温控反映瓷砖、碳纳米管、透明铝材
1、石墨烯气凝胶
由中国浙江大学的研究人员研究开发而成的石墨烯气凝胶,目前已知它是地球上最低密度的物质之一,是一种泡沫状固体材料,尽管几乎轻如空气却保有固定形状。有的气凝胶的密度只有空气的3倍,但通常气凝胶是空气的15倍重。
你可能会认为凝胶是如发胶一般湿湿的物质。实际上气凝胶是通过排除凝胶中的液体制得的。除去90%到99%的空气以外,剩下的只是二氧化硅结构。气凝胶几乎没有重量,但是可以拉长成薄片气凝胶织物。在建设项目中,气凝胶织物具有“超强隔热”的特性,其多孔结构使热量很难通过。测试表明气凝胶织物的隔热能力是传统玻璃纤维或泡沫绝缘材料的2到4倍。一旦价格适中,它就可以广泛应用于建筑。
石墨烯气凝胶,分开解读的话,其一是石墨烯,由于碳包含四个价电子,这使其有可能以其他方式与其他碳原子结合。这些不同的物理表现形式称为同素异形体。金刚石就是碳的同素异形体,石墨烯是碳的另一种同素异形体。与金刚石三维立体结构不同,石墨烯实际上是二维的。它只有一个碳原子那么厚。石墨烯是当今已知最坚固的材料。另一方面,石墨实际上是多片石墨烯。石墨在普遍使用的铅笔中被普遍称为“铅”。由于这些薄板仅通过弱原子力“结合”在一起,因此它们倾向于相互滑动,从而使结构相对较弱。
另一部分就是气凝胶。凝胶由悬浮在液体中的少量固体组成。当用空气代替液体时,空气被捕集在非常紧密的袋中被捕获在由剩余固体材料形成的网络中。因此,气凝胶由凝胶的固体部分加空气组成因此得名。它们是固体,并且由于它们主要是空气,因此它们的重量比空气重得多。在它们的特性中,气凝胶是出色的绝热材料。这是因为它们主要由空气组成,而空气本身就是不良的热导体,更重要的是,由于空气被固体网络捕获并且无法循环。
一旦许多石墨烯片被充气孔隔开,就会变成石墨烯气凝胶。
2、绿色木炭
目前广泛应用于建筑的混凝土面临着许多技术挑战。例如,传统的钢筋容易生锈,导致整个复合材料的强度等性能下降;另外,混凝土也很难回收,几乎为一次性材料。
印度设计与创新学院的Meenal Sutaria和Shreyas More设计了一种替代复合材料,由多孔碳、丝瓜络纤维、肥土、水泥和包裹在其中的空气组成。选择的每种材料都有自己的优势:多孔碳质量轻,同时可吸附空气污染物;有机丝瓜络增强复合材料韧性;而土壤则起到弹性粘合剂和保持稳定pH值的作用。虽然这种材料仍处于原型研发阶段,但在可生物降解的景观墙中具有广泛的潜在适用性。
3、纳米材料
纳米技术正在推动材料科学,它突破了曾经看起来不可能的限制。TRY2004金字塔超级城市概念曾为东京发展做出了很大的帮助,但由于该项目的难度,它只能在碳纳米管的帮助下完成。
当与高强度混凝土结合使用时,碳纳米管(CNT)等纳米材料会产生一种伸缩性强的材质,使得建筑不再需要钢筋,因此加快了施工进程。还有更多的可能性,其他发展包括超轻型(超强)材料以及另一种自修复混凝土。
4、可编程水泥
混凝土生产是温室气体排放的罪魁祸首之一。为了进一步改进混泥土材料,美国莱斯大学的研究人员将目光投向了纳米级领域,他们研究了硅酸钙水合物(C-S-H)水泥如何结晶,并用它来合成具有特定形状的C-S-H颗粒。研究人员将它们变成立方体,矩形、棱柱、树突状、核壳和菱形,这样的形状能够让它们更密集地放在一起。团队能够通过调整原始种子的浓度、温度和生成过程的持续时间来控制这些最终颗粒的数量、大小和形状。然后将该信息映射成可以与制造商和建造者共享的统一形态图,使他们设计具有特定期望属性的混凝土。
“一个优点是,因为它变得更强硬,所以不需要太多就能达到以前的效果,”研究人员解释说:“这是由于立方体颗粒的压紧效果更好会产生更强的微观结构;另一个优点是其更耐用,以及更少的孔隙率使得其隔绝了更多化学物质的进入,因此钢筋内部不易受到破坏。”
传统混凝土通过控制水泥、砂石、水等材料的混合比例来调整产品性能,可编程水泥制备与之存在明显差异。可编程水泥是通过控制水化硅酸钙结晶,改变其微粒形状,在微观结构上组合得到混凝土材料,从而使得可编程水泥具备高密度、高硬度、防水、耐腐蚀等性能。在全球范围内,美国莱斯大学最先研发出可编程水泥。2016年,莱斯大学科研团队直接深入到纳米级来研究水泥微粒,通过“编程”将水泥微粒的形状改变为立方体、三棱柱、枝状晶体、核壳结构、菱面体等,得到的可编程水泥具备更牢固、更防水、更环保以及防火、可弯曲、自我恢复等性能。
水泥是不可或缺的建筑材料,同时具备能耗高、环境污染高的特点,我国是全球最大的水泥生产国,在节能减排、碳中和、可持续发展战略背景下,水泥行业必须改革升级,新型建筑材料开发需求迫切。目前,我国水泥市场集中度高,中国建材、海螺水泥、金隅冀东等少数企业占据较大市场份额,龙头企业进一步提高竞争力、非龙头企业扩大市占率,生产性能优、环境友好的新型产品成为重要手段。在此情况下,可编程水泥在我国拥有良好发展前景。
目前来看,我国在可编程水泥研究方面与美国相比关注度较低,但为实现从制造大国向制造强国转变,以及实现碳中和、可持续发展战略目标,我国政府正在大力推动高性能、高环保新材料的研究工作,未来,我国新型建筑材料相关研究投入将不断加大,可编程水泥相关研究成果有望不断增多
5、自修复混凝土
混凝土是世界上使用最广泛的建筑材料。事实上,它是水之后地球上第二大消费品。混凝土有廉价和广泛适应性等优点,但也容易开裂,在极热和极冷环境下抗压性能会恶化。
过去修复有裂缝的混凝土的唯一途径就是修补它、加强它,或者把它敲下来从头开始。但以后将不需再这样了。美国罗德岛大学的研究生和化学工程教授创建了一种新型“智能”混凝土,可以“智能”修复自身的裂缝。这是因为混凝土混合物中嵌入了微型水玻璃胶囊。当裂纹产生时,胶囊破裂并释放一种凝胶状愈合剂,变硬填补空隙,实现自我修复。
当然,这不是自修复混凝土的唯一修复方法。其他研究人员利用细菌或嵌入玻璃毛细管或聚合物微胶囊达到类似的效果。
6、温控反映瓷砖
这种温控反映瓷砖,也是一种新技术,未来一定会得到广泛的应用。它的妙处在于可以根据温度的不同,变换不同的颜色。
这种温控反映瓷砖,是一家名为移动颜色(Moving Color)的公司生产着一种玻璃装饰瓷砖,瓷砖表面涂覆着一种热致变色染料,可以像“活着”一般随表面温度发生变化。在室温下,瓷砖是一个光滑的黑色,但当你接触到瓷砖或者有光直射或温水接触时,瓷砖颜色就像北极光一样转变成彩虹般的蓝色、绿色和粉红色。
7、碳纳米管
碳纳米管是目前可制备出的具有最高比强度的材料,可以拉伸超过厚度的一百万倍。
一纳米(nm)只有一米的十亿分之一,这是微乎其微的小。一张纸的厚度是100000nm。人的指甲生长速度大约1nm每秒,即使人的DNA链也只是2.5nm宽。这样看来构造“纳米”级的材料似乎是不可能的。但科学家和工程师通过使用电子束光刻技术等尖端技术,已经成功地创造出壁厚只有1nm的碳纳米管。
当大的粒子变小时,其表面积在不断增加。这些碳纳米管具有比地球上其它任何材料都高的比强度,可以拉伸超过厚度的一百万倍。碳纳米管的质量之轻和强度之高,使它们可以嵌入到其他金属、混凝土、木材和玻璃等建筑材料中来增加材料密度和抗拉强度。工程师们甚至尝试在建筑材料加入纳米传感器,这样可以在材料破裂和开裂之前监测出来。
碳纳米管结构及特性
碳纳米管又称巴基管,英文简称CNT,是由单层或多层的石墨烯层围绕中心轴按一定的螺旋角卷曲而成一维量子材料。其最早在1991年由饭岛澄男发现。碳 纳米管的长径比、碳纯度作为影响导电性的两个核心指标,直接决定了碳纳米管的产品性能,碳纳米管管径越细,长度越长,导电性能越好。
CNT具有突出的多方面性能:1)力学性能:具有极高的弹性和韧性,杨氏模量是钢的近6倍、抗拉强度是钢的100倍,也是目前自然界中比强度最高的材料 。2)电学性能:导电性显著优于石墨烯、炭黑等材料,且管径越细、长度越长,导电性越好。3)导热性能:极高的导热率,室温下导热率是金刚石的2倍。 轴向导热性能优、径向导热较差,可合成各向异性的导热材料。4)化学稳定性:具有耐酸性、耐碱性,在高分子复合材料中添加碳纳米管可以提高材料本身 的阻酸抗氧化性能。5)嵌锂性能优异:碳纳米管的中空管腔、管与管之间的间隙、管壁中层与层之间的空隙及管结构中的各种缺陷,为锂离子提供了丰富的 存储空间和运输通道。
碳纳米管分类:单壁碳纳米管性能更优
单壁碳纳米管优势体现为:
结构简单、化学性质稳定:多壁碳纳米管形成过程中层与层之间容易成为陷阱中心而捕获各种缺陷,而单壁碳纳米管结构简单、均匀一致性好,且缺陷少、 化学性质稳定。
添加量少、导电性优:由于单壁碳纳米管长度-直径比较高,其能够在极低添加量下形成三维导电网络。同时,单壁碳纳米管有一层碳原子,并根据空间的螺 旋特性可表现出金属或半导体性能。此外,其强大的碳碳键使得其能够有更高的载流量,电流密度能够高于铜等金属1000倍以上。
弹性好、机械性能高:单壁碳纳米管具有更强的柔韧性,能够更好的弯曲、扭曲或扭结,其弹性模量和抗拉强度显著优于多壁碳纳米管。
导热性好:单壁碳纳米管的单位质量导热系数高于多壁碳纳米管,同时二者都能够承受750℃以上的高温。
制成品颜色多样:多壁碳纳米管通过提高添加量来改善机械性能和导电性,这会影响产品表面质量和颜色,如其只能生产黑色材料。由于单壁碳纳米管添加 量普遍在0.01-0.1%,因而能够生产任何颜色以及透明导电材料。
在商业用途中,碳纳米管根据石墨烯层数差异可以分为单壁碳纳米管和多壁碳纳米管。单壁碳纳米管优势体现为:
安全性能优:在45℃高温多周循环下,添加单壁CNT的软包电池内阻增长,明显低于添加其他导电剂的电池,表明电池着火风险越小。
提升极片附着力:单壁碳纳米管网络将正极材料颗粒连在一起,从而提高了颗粒之间的连接强度。而这一特性对于易粉化、易脱落的硅基负极而言尤为重要
8、透明铝材
透明铝材可以需要更小的内部支撑来建造高耸的玻璃幕墙摩天大楼。
几十年来,化学工程师梦寐以求地开发一种结合了金属的强度和耐久性的与玻璃般透亮的材料。这种“透明金属”可以以很小的内部支撑来建造高耸的玻璃幕墙摩天大楼。军事建筑可以安装这种薄而透明的金属窗户经受起最高级的炮火攻击。而早在1980年代,科学家们就开始试验一种由铝、氧和氮混合粉所形成的新型陶瓷。陶瓷经过热处理和冷却过程得到硬度很高的晶体材料。他们将混合铝粉置于巨大的压力之下,在2000℃(3632 F)高温加热数天,最后抛光生产出透明如玻璃一般又兼具铝的强度的新材料。这种被认为是透明铝材或者ALON的太空材料已经用于军队生产装甲窗户和光学透镜
透明铝材可以需要更小的内部支撑来建造高耸的玻璃幕墙摩天大楼。
这种“透明金属”可以以很小的内部支撑来建造高耸的玻璃幕墙摩天大楼。军事建筑可以安装这种薄而透明的金属窗户经受起最高级的炮火攻击。而早在1980年代,科学家们就开始试验一种由铝、氧和氮混合粉所形成的新型陶瓷。陶瓷经过热处理和冷却过程得到硬度很高的晶体材料。他们将混合铝粉置于巨大的压力之下,在2000℃(3632 F)高温加热数天,最后抛光生产出透明如玻璃一般又兼具铝的强度的新材料。这种被认为是透明铝材或者ALON的太空材料已经用于军队生产装甲窗户和光学透镜。